REVISION THR Survivorship for Ceramic Failures- Is Survival Different ?

Vishal Kumar ¹, Piyush Upadhyay ², Christopher Wakeling ³, Nirav Shah ³ Imperial College London ¹, Southmead Hospital Bristol ², UH Sussex ³

University Hospitals Sussex NHS Foundation Trust

Introduction

We present a series of 10 ceramic THR bearing fractures in 9 patients, with retrospective analysis of components and their position looking for underlying cause, and further followed clinically and radiologically for 9-13 years and analysed for survivorship.

Material and Methods

RESULTS

Survival Analysis

Clinical Assessment-Oxford Hip Score: Good to Excellent (38-48).

One Patient had periprosthetic fracture but regained the function after fracture healing.

Radiological Assessment : There were no osteolysis, loosening, no change of component position nor evidence of wear, on the final follow up with good osteo-integration of the socket.

We reviewed patients revised by Senior Surgeon (NNS) for a fractured ceramic bearing components. Primary components were all cementless, hydroxyapatite-coated femoral stems and uncemented acetabular shells. There were 7 head and 3 liner breakage from different manufacturers. Nine ceramic components were 3rd generation Alumina ceramic, though, one was 4th generation delta ceramic. The Index procedures were done between 2000-2007 and revised between 2008-2012. Of the bearings, there were two ceramic-on-poly couplings, and 8 ceramic-on-ceramic.

All Sockets were revised to uncemented JRI CSF cup with 4th Generation Ceramic on ceramic Bearings with Titanium sleeve Heads after through debridement. As all stems were well fixed, thus no stem revisions done.

The revision surgery operation note was inspected for perioperative findings, including evidence of component mispositioning, loose components, abnormal wear or infection

Survival Analysis : 100% @ 9-13 years

			Cumulative Proport	ion Surviving at the ne		
					N of Cumulative	N of Remaining
	Time	Status	Estimate	Std. Error	Events	Cases
	4.000	no			0	9
	7.000	yes	.889	.105	1	8
	9.000	no			1	7
	9.000	no			1	6
	9.000	no			1	5
	9.000	no			1	4
	10.000	no			1	3
	10.000	no			1	2
	11.000	no			1	1
)	13.000	no			1	0

Eight hips(7 patients) were followed up period 9-13 years (1 lost to follow up, 1 Deceased)

2010

2021

ailur
e
ead
eadaad
ead
eadaad
eadaad
eadaad
eadaad
eadaad
eadaad
eadaad
eadaad
eadaad
ead

2021

Conclusion

Complex revision hip surgery is required for ceramic bearing fractures.

Small Ceramic heads (28mm), with short-neck have tendency towards fracturing, despite accounting for a minority (21%) of implants in our study.

Adapter sleeves allow an even distribution of contact stresses between stem taper and head, compensating local taper damage and stopping further wear propagation from initial ceramic wear particles and avoids the need for revising a well fixed stem.

Optimum component Positioning of Uncemented JRI CSF cup with 4th Generation Delta ceramic with Sleeved Titanium head have given excellent Mid-Term Results and prevented any further wear or need of revision.

CPresenting Author

Cup Inclination /Anteversion

Pati ent	Femoral Stem	Stem Neck Length	Head Type	Head Size	Head Lengt h	Acetab ular Cup	Acetabular Liner	Failur e
1	ANCA 11	Long	Alumina	28mm	Short	CSF	CSF Ceramic	Head
2	Corail	Neutral	Alumina	28mm	Short	CSF 50	CSF TriFix 28 Ceramic	Head
3	ANCA 15	Short	Alumina	28mm	Short	CSF 50	CSF TriFix 28 Ceramic	Head
5	Furlong	n/a	Alumina	28mm	Short	CSF 52	CSF 48/52 Ceramic	Head
6	ANCA 12	Long	Wright Cremascol	28mm	Short	CSF 48	CSF 48/52 Ceramic	Head

7	ANCA 14	Short	Alumina	28mm	Long	CSF 50	CSF 50/28 UHMWPE	Head
8	JRI Furlong 11mm	n/a	Alumina	28mm	Neutr al	CSF 52	CSF 52/28 Ceramic	Liner
9	Corail	High offset	Biolox Delta Ceramax	36mm	Long	Pinnacl e 52	Biolox delta ceramax 52/36	Liner
10	JRI Furlong 10mm	5mm Offset	Biolox Delta Ceramaxa n	28mm	Short	CSF 56	CSF 54-56/28 Ceramic	Liner
11	JRI Furlong 9mm	n/a	JRI Ceramic	28mm	Neutr al	JRI CSF 48	CSF 47-52/28 UHMWPE	Head

Table 1 Components retrieved

2012

2021

Vishal Kumar

Email- Vishal.kumar8@nhs.net

Corresponding Author

Mr Nirav Shah

Nirav.shah@nhs.net

Declaration

The authors declares that the research for and communication of this independent body of work does not constitute any financial or other conflict of interest